

ZIPATO MQTT DOCUMENTATION

1.0.0 Initial version

1.1.0 Added more details to generic network
actions.

Verbose description of Z-Wave inclusion and
exclusion procedures.

Added networks/status topic description

1.2.0 Added more description to all Z-Wave
specific network actions

Changed names of all Z-Wave specific
network actions to make them more
consistent with the rest of the api

Documented actions for setting and getting
Z-Wave specific device configuration

Fixed wrong response topic for attributes

1.2.1 Documented name changes for certain
Z-Wave specific network actions

Cleaned up JSON examples

1.2.2 Add missing states to GET_CONF

1.3.0 Added device state transition description and
state transition diagram

1.4.0 Added binary sensor endpoints epId table

1.5.0 Added Z-Wave manufacturer specific device
identification tables

1.6.0 Added invoke interface

1.7.0 Added Z-Wave protocol data backup/restore
action descriptions
Added general backup procedure description\

1.8.0 Added set/get wakeup interval actions.
Fixed wrong parameter name for set/get
configuration actions. Added table of
contents. Fixed manufacturer specific id’s for
some devices.

1.9.0 Documented possible failures when calling
CHECK_FAILED_NODES

2.0 Added new invoke actions for Z-Wave
network

Added getValue action to attribute topic

2.1 Clarified FAILED status for Z-Wave specific
SET/GET configuration commands

2.2 Added secureInclusionDisabled
parameter

2.3 Added description for replace failed node and
learn mode Z-Wave network actions

2.4 Clarifications to invoke interface

2.5 Fixed wrong status messages

2.6 Add timeout parameter for exclusion

2.7 Add timeout parameter for inclusion

2.8 Add device model introduction

2.9 Add Z-Wave OTA firmware update action

3.0 Add MQTT KeepAlive description

3.1 Updated device topic description

Table of contents

Table of contents

Zipato Device Model introduction

Box status topics

Box actions

Network topics

Generic network actions

Z-Wave specific network actions

Device topics

Endpoint topics

ClusterEndpoint topics

Attribute topics

Attribute actions

Z-Wave device state transitions

Binary sensor endpoints

Z-Wave manufacturer specific device identification tables

Invoke interface
Available methods

Runtime backup procedure

Zipato Device Model introduction

Zipato device model is designed to be a generic abstraction layer that can be used to model
various communication protocols and devices.
The device model is a hierarchy of entities that represent various aspects of any given protocol
or device.
Zipato Device Model in general is comprised of several types of entities.
Each entity in the device model is uniquely identifiable with an UUID.
Here is a simple overview of the device model hierarchy:

● Network(s)
○ Device(s)

■ Endpoint(s)
● Cluster(s)

○ Attribute(s)

Network
Networks usually represent a particular protocol, like Z-Wave or Zigbee for example. Networks
can have one or more devices. Almost all networks have a few common actions, like adding a
device, removing a device or resetting a device. A network can also have network specific
actions.

Device
A device represents an actual physical device, a wall plug or a door sensor for example. A
device typically has one or more functions. Networks can have one or more devices.

Endpoint
Endpoints are used for “partitioning” various functions and features of a device according to its
features and limitations of the device model itself. There are no general rules on how endpoints
should be used or what should they represent. However, each device usually has at least one
endpoint, or several.

Cluster
A cluster represents a particular device function, like a reed sensor of a door sensor, or a relay
of a wall switch for example. An endpoint can contain one or more clusters that represent
functions of a particular device.
One important constraint of the device model is that an endpoint cannot contain more
than one cluster of a particular type.
For example, if a device has two relays, clusters representing these relays will of course be of
the same type. But they cannot be under the same endpoint, each has to be under its own
endpoint.

https://en.wikipedia.org/wiki/Universally_unique_identifier

Attribute
Attributes represent one or several states or values of a particular device function.
For example, reed sensor state of a door sensor or relay state of a wall plug can be modelled
with a simple boolean value; Both can be either on or off.
That means that clusters that model these functions(simple binary sensor and simple binary
actuator in this example) will have a single attribute that holds the current state of these
functions.

Attributes can be readable, writable or both. For example an attribute of a cluster that models a
simple binary sensor will be readable, but not writable. It makes no sense to “write” the state of
a sensor device.
An attribute of a cluster that models simple binary actuators, like a relay of a wall plug, will be
both readable and writable; You can check its state and you can change the state.

Attribute definitions
Attributes model, or “hold” so to speak, the current state or value of a particular function of a
device. Certain device functions have additional associated data.
For example, a wall plug might have a meter function, one that can measure current power
consumption and voltage.
Both of these functions have units that describe their values. An attribute definition is used to
hold additional data about a certain device function. Each attribute has an associated attribute
definition.

Box status topics

Request Topic: N/A,
ResponseTopic: /local/ha/bridges/zipato/conn_status
Payload type: String, “online” or “offline”
Description: Last will configuration of Mqtt connection. sent automatically when client
establishes connection and when connection is lost

Request Topic: /local/ha/bridges/zipato/box/info
Response Topic: request/box/info
Request Topic Payload: N/A
Response Type: JSON
Response example:
{

"mqttApiVersion": "1.0.0",
"boxSerial": "boxSerial",
"boxFw": "boxFw"

}

Description: Sent automatically when client establishes connection or on request via request
topic. Contains the box serial number, firmware version and current mqtt api version.

Request Topic: N/A
Response Topic: /local/ha/bridges/zipato/box/messages
Request Topic Payload: N/A
Response type: JSON
Response Example:
{

{"SYSTEM":"STARTED"}
}

Description: Various unsolicited system messages.

Request Topic: N/A
Response Topic: /local/ha/bridges/zipato/box/KeepAliveEvents
Request Topic Payload: N/A
Response Type: JSON
Response example:
{"className":"com.zipato.event.MQTTKeepAliveEvent"}

Description: Keep alive ticker. By default it emits a tick every 10 seconds.

Box actions

Request box synchronisation
Request Topic: request/box/sync
Request Topic Payload: N/A
Response/Result topic: /local/ha/bridges/zipato/box/messages
Response Type: JSON
Response Example:
{"progress":"complete","command":"LOAD_ALL"}

Description: Start cloud synchronisation. At the moment this is still a necessary step after
successful device discovery.

Network topics

Request Topic: request/networks/list
Request Topic Payload: N/A
Response Topic: /local/ha/bridges/zipato/networks/list
Response Type: JSON
Response Example:
[{

"link": "/networks/df214ae6-653e-4d3d-a195-87c241799e82",
"name": "IP",
"uuid": "df214ae6-653e-4d3d-a195-87c241799e82"

}, {
"link": "/networks/de6a9aa9-5555-4a99-8d46-54be03573569",
"name": "IP backup",
"uuid": "de6a9aa9-5555-4a99-8d46-54be03573569"

}, {
"link": "/networks/a7c13a52-9e50-434c-b0e9-fa3b009163d5",
"name": "Mqtt",
"uuid": "a7c13a52-9e50-434c-b0e9-fa3b009163d5"

}, {
"link": "/networks/f5f264a0-0473-4c10-92c7-0fcfd1cebd5c",
"name": "Zwave",
"uuid": "f5f264a0-0473-4c10-92c7-0fcfd1cebd5c"

}]

Description: A list of available networks on the current box.

Request Topic: request/networks/$UUID/info
Request Topic Payload: N/A
Response Topic: /local/ha/bridges/zipato/networks/$UUID/info
Response Type: JSON
Description: Various network specific data and current status. Also contains a list of devices in
that network.
Response Example:
{

"link": "networks/a7c13a52-9e50-434c-b0e9-fa3b009163d5",
"config": {

"className": "com.zipato.network.mqtt.MqttNetwork",
"uuid": "a7c13a52-9e50-434c-b0e9-fa3b009163d5",
"name": "Mqtt",
"cv": 0,
"sv": 0,
"deleted": false,
"nd": true,
"tags": null,
"order": null,

"param": null
},
"devices": [],
"state": {

"network": "a7c13a52-9e50-434c-b0e9-fa3b009163d5",
"discovery": false,
"online": false,
"trouble": false

},
"stateTimestamp": "2016-04-04T19:44:59Z",
"templateId": null,
"uuid": "a7c13a52-9e50-434c-b0e9-fa3b009163d5"

}

Request Topic: N/A
Request Topic Payload: N/A
Response Topic: /local/ha/bridges/zipato/networks/$UUID/messages
Response Type: JSON
Description: Unsolicited network messages that occur as a result of some network actions like
network initialization, device discovery, device configuration or device deletion for example.
Response Example:
{
{"secondary":false,"sisNodeId":1,"inclusionCtrl":false,"final":false,"primarySis":true,"zNodeId":1,"type":"INIT","homeId":3782768885,"
network":"ZWAVE","status":"DONE"}
}

Request Topic: N/A
Request Topic Payload: N/A
Response Topic: /local/ha/bridges/zipato/networks/$UUID/status
Response Type: JSON
Description: Unsolicited network messages that are usually sent when a network goes online
or offline. A network usually comes online after it is initialized. A network usually goes offline if
its initialization fails.

Generic network actions
All network action response payloads are of course in json format. Every network action
response json object has a a couple of key properties:

● type: this property contains the name of the current action.
● network: this property contains the name of the network on which this particular action

is executing

● status: Status of the current action
● final: This boolean property is used to denote the final response of the current action.

A response that has the final field set to true marks the end of that action
Certain network actions will have more properties in their response objects.
A general limitation on almost all networks is that they can execute one action at a time.

Start device discovery
Request Topic: request/networks/UUID/command
Response/Result Topic: /local/ha/bridges/zipato/networks/UUID/messages
Request Topic Payload:
{

"className": "com.zipato.event.CommandEvent",
"command": "DISCOVERY_ON"

}

Optional properties:
● secureInclusionDisabled - setting this property to true will disable Z-Wave

secure inclusion
Description: Generic action to start discovery on any network that supports device discovery.

Stop device discovery
Request Topic: request/networks/UUID/command
Response/Result Topic: /local/ha/bridges/zipato/networks/UUID/messages
Request Topic Payload:
{

"className": "com.zipato.event.CommandEvent",
"command": "DISCOVERY_OFF"

}

Description: Generic action to stop discovery on any network that supports device discovery.
On some networks, like Z-Wave for example, this command is also used to stop any current
ongoing network action.

Z-Wave specific network actions

Certain Z-Wave specific network actions names have been changed in firmware version 1.0.9.1:

● checkFailedNodes -> CHECK_FAILED_NODES
● getProtocolStatus -> GET_PROTOCOL_STATUS
● enableRadio -> ENABLE_RADIO
● disableRadio -> DISABLE_RADIO

Start device exclusion
Request Topic: request/networks/UUID/command
Response/Result Topic: /local/ha/bridges/zipato/networks/UUID/messages
Request Topic Payload:
{

"className": "com.zipato.event.CommandEvent",
"command": "DELETE_DEVICE_ZW

}

Description: Starts the exclusion procedure.
Optional request payload parameters:

● timeout: exclusion timeout, in seconds. Exclusion will be stopped if a device is not
found in this time interval

Response object properties:
● type: “REMOVE”
● Network: “ZWAVE”
● nodeId: the node id of the removed node. This property will be set to 0 if a node from a

different network was excluded
● device: UUID of the removed device. This property is set if a known device was

excluded
● status:

○ STARTED: Z-Wave module now operating in exclusion mode
○ NODE_FOUND: Z-Wave module has detected a device running in exclusion

mode
○ SUCCESSFUL: Exclusion complete.
○ TIMEOUT: No device found for exclusion in 45 seconds, exclusion mode turned

off
○ UNSUCCESSFUL: Exclusion failed, cause of failure set in message property

● Message: cause of the exclusion failure

Start device inclusion
Request Topic: request/networks/UUID/command
Response/Result Topic: /local/ha/bridges/zipato/networks/UUID/messages
Request Topic Payload:

{
"className": "com.zipato.event.CommandEvent",
"command": "DISCOVERY_ON"

}

Description: Starts the inclusion procedure.
Optional request payload parameters:

● timeout: inclusion timeout, in seconds. Inclusion will be stopped if a device is not found
in this time interval

Response object properties:
● type: “INCLUSION”
● Network: “ZWAVE”
● status:

○ STARTED: Z-Wave module now operating in inclusion mode
○ DEVICE_FOUND: Z-Wave module has detected a device running in inclusion

mode
○ SUCCESSFUL: inclusion complete.
○ NODE_ALREADY_INCLUDED: Self explanatory
○ TIMEOUT: No device found for inclusion in 60 seconds, inclusion mode turned

off
○ FAILED: Inclusion failed, cause of failure set in message property

● Message: cause of the exclusion failure

A successful inclusion is always followed by a secure inclusion procedure if the device supports
the SECURITY command class:
Secure inclusion procedure response object properties:

● type: “SECURE_INCLUSION”
● Network: “ZWAVE”
● Status:

○ DONE: Secure inclusion successful
○ FAILED: Secure inclusion failed, cause of failure set in message property
○ TIMEOUT: Secure inclusion timed out cause of timeout set in reason property

● reason/message: cause of timeout or failure

Secure inclusion may sometimes fail. The state of the device after that is mostly unknown. The
device might be fully operational or certain features might not work. It is advised to exclude the
device and include it again if secure inclusion fails.

A successful inclusion is also always followed by a device configuration procedure that
interviews/configures the newly joined device:
Device configuration response object properties:

● type: “REDISCOVERY”
● Network: “ZWAVE”
● Status:

○ SUCCESSFUL: Device configuration successful

○ UNSUCCESSFUL: Device configuration failed, cause of failure set in reason
property

○ INVALID_RESPONSE: Usually indicates a fatal exception during device
configuration

○ TIMEOUT: Device configuration timed out, cause of timeout set in reason
property

● reason/message: cause of timeout or failure

Start failed node check procedure.
Request Topic: request/networks/UUID/command
Response/Result Topic: /local/ha/bridges/zipato/networks/UUID/messages
Request Topic Payload:
{"className":"com.zipato.event.CommandEvent","command":"NETWORK_ACTION", "action": "CHECK_FAILED_NODES"}

Description: Starts the failed node check procedure.
Device configuration response object properties:

● action: “CHECK_FAILED_NODES”
● Network: “ZWAVE”
● Status:

○ STARTED
○ NO_FAILED_NODES
○ FAILED_NODE_FOUND: at least one failed node was found
○ FAILED: reason of failure set in reason property

● Reason: cause of failure. A failure is always a missing response from the Z-Wave
module. The field will indicate which response was not sent:

○ Missing list of failed nodes
○ Missing response to a failed node check

Disable Z-Wave radio
Request Topic: request/networks/UUID/command
Response/Result Topic: /local/ha/bridges/zipato/networks/UUID/messages
Request Topic Payload:
{"className":"com.zipato.event.CommandEvent","command":"NETWORK_ACTION", "action": "DISABLE_RADIO"}

Description: Disables Z-Wave RF transmitter and blocks all RF communication.
Device configuration response object properties:

● action: “DISABLE_RADIO”
● Network: “ZWAVE”
● Status:

○ STARTED

○ DONE

Enable Z-Wave radio
Request Topic: request/networks/UUID/command
Response/Result Topic: /local/ha/bridges/zipato/networks/UUID/messages
Request Topic Payload:
{"className":"com.zipato.event.CommandEvent","command":"NETWORK_ACTION", "action": "ENABLE_RADIO"}

Description: Enables Z-Wave radio and unblocks RF communication.
Device configuration response object properties:

● action: “ENABLE_RADIO”
● Network: “ZWAVE”
● Status:

○ STARTED
○ DONE

Get protocol status
Request Topic: request/networks/UUID/command
Response/Result Topic: /local/ha/bridges/zipato/networks/UUID/messages
Request Topic Payload:
{"className":"com.zipato.event.CommandEvent","command":"NETWORK_ACTION", "action": "GET_PROTOCOL_STATUS"}

Description: Retrieves current protocol status from the Z-Wave module.
Device configuration response object properties:

● action: “GET_PROTOCOL_STATUS”
● Network: “ZWAVE”
● Status:

○ STARTED
○ ZW_PROTOCOL_IS_IDLE
○ ZW_PROTOCOL_STATUS_ROUTING
○ ZW_PROTOCOL_STATUS_SUC
○ UNKNOWN_RETURN_VALUE
○ FAILED: reason of failure set in reason property

● Reason: cause of failure

Get RF power level
Request Topic: request/networks/UUID/info
Response/Result Topic: /local/ha/bridges/zipato/networks/UUID/messages
Request Topic Payload: N/A

Description: Current RF power level is contained within network specific information retrieved
via this request topic

Hard reset Z-Wave module
Request Topic: request/networks/UUID/command
Response/Result Topic: /local/ha/bridges/zipato/networks/UUID/messages
Request Topic Payload:
{"className":"com.zipato.event.CommandEvent","command":"DISCOVERY_ON", "zwCmd": "zwHardReset"}

Description: Hard reset Z-Wave module by calling ZW_SetDefault(). Deletes all node and
routing data from the module and resets the controller node id to 1 and home id to a random
value
Device configuration response object properties:

● type: “HARD_RESET”
● Network: “ZWAVE”
● Status:

○ STARTED
○ DONE
○ FAILED: reason of failure set in reason property

● Reason: cause of failure

Set device specific configuration
Request Topic: request/networks/UUID/command
Response/Result Topic: /local/ha/bridges/zipato/devices/UUID/messages
Example Request Topic Payload:
{"className":"com.zipato.event.CommandEvent","command":"DISCOVERY_ON",

"paramId":"3","value":1,"zwDevUUID":"e0a52321-88d1-4f6a-9b83-9aba6afdcf27","zwCmd":"ZwConfHandle

r_SET_CONF"}

Description: Set device specific configuration parameters via configuration command class
commands.
Response object properties:

● type: “SET_CONF”
● Network: “ZWAVE”
● Status:

○ STARTED
○ WAITING_WAKEUP_NOTIFICATION: Waiting for the device to wake up
○ TIMEOUT_WAKEUP_NOTIFICATION: Timed out while waiting for the device to

wake up (30 seconds)
○ DONE
○ FAILED: Indicates failed transmission for SET command and missing report for

GET command
● paramId: current configuration parameter
● value: value of the current configuration parameter

Get device specific configuration
Request Topic: request/networks/UUID/command
Response/Result Topic: /local/ha/bridges/zipato/devices/UUID/messages
Example Request Topic Payload:
{"className":"com.zipato.event.CommandEvent","command":"DISCOVERY_ON", "paramId":"3",

"zwDevUUID":"e0a52321-88d1-4f6a-9b83-9aba6afdcf27","zwCmd":"ZwConfHandler_GET_CONF"}

Description: Get device specific configuration parameters via configuration command class
commands.
Response object properties:

● type: “GET_CONF”
● Network: “ZWAVE”
● Status:

○ STARTED
○ WAITING_WAKEUP_NOTIFICATION: Waiting for the device to wake up
○ TIMEOUT_WAKEUP_NOTIFICATION: Timed out while waiting for the device to
○ DONE
○ FAILED: reason of failure set in reason property

● paramid: current configuration parameter
● value: value of the current configuration parameter
● Reason: cause of failure

Backup Z-Wave module protocol data
Request Topic: request/networks/UUID/command
Response/Result Topic: /local/ha/bridges/zipato/devices/UUID/messages
Example Request Topic Payload:
{"className":"com.zipato.event.CommandEvent","command":"DISCOVERY_ON", "zwCmd": "zwBackup"}

Description: Backup Z-Wave module protocol data to a file. Data will be written to
$ZIPATO_HOME/storage/zwaveProtocolDataBackup.bin file.
Response object properties:

● type: “BACKUP”
● Network: “ZWAVE”
● Status:

○ STARTED
○ DONE
○ FAILED: reason of failure set in reason property

● Reason: cause of failure

Restore Z-Wave module protocol data
Request Topic: request/networks/UUID/command
Response/Result Topic: /local/ha/bridges/zipato/devices/UUID/messages
Example Request Topic Payload:
{"className":"com.zipato.event.CommandEvent","command":"DISCOVERY_ON", "zwCmd": "zwRestore"}

Description: Restore Z-Wave module protocol data from a file. Data will be read from
$ZIPATO_HOME/storage/zwaveProtocolDataBackup.bin file.
Response object properties:

● type: “RESTORE”
● Network: “ZWAVE”
● Status:

○ STARTED
○ DONE
○ FAILED: reason of failure set in reason property

● Reason: cause of failure

Remove failed node
Request Topic: request/networks/UUID/command
Response/Result Topic: /local/ha/bridges/zipato/networks/UUID/messages
Example Request Topic Payload:
{"className":"com.zipato.event.CommandEvent","command":"DISCOVERY_ON", “zwDevUUID”: “UUID”, "zwCmd":
"zwRemoveFailedNode"}
Description: Starts the exclusion procedure.
Response object properties:

● type: “REMOVE_FAILED_NODE”
● Network: “ZWAVE”
● status:

○ STARTED: Remove failed node procedure started
○ CANNOT_REMOVE: Node is reachable, it cannot be removed
○ DONE: Failed node removed
○ FAILED: Failed to remove node, cause of failure set in reason property

● reason: cause of the failed node removal failure

Replace failed node
Request Topic: request/networks/UUID/command
Response/Result Topic: /local/ha/bridges/zipato/networks/UUID/messages
Example Request Topic Payload:
{"className":"com.zipato.event.CommandEvent","command":"DISCOVERY_ON", “zwDevUUID”: “UUID”, "zwCmd":
"zwReplaceFailedNode"}
Description: Used to replace a non-responding node with a new one. The node id of the new
node is the same as the node id of the replaced device. Please note that the response object
properties are mostly the same as when starting an inclusion procedure since both basically do
the same thing.
Response object properties:

● type: “INCLUSION”
● Network: “ZWAVE”
● status:

○ STARTED: Replace failed node procedure started
○ NODE_FOUND: Z-Wave module has detected a device running in inclusion

mode
○ DONE: Node replaced
○ FAILED: Failed to replace node, cause of failure set in reason property

● reason: cause of the failed node replace failure

Start learn mode
Request Topic: request/networks/UUID/command
Response/Result Topic: /local/ha/bridges/zipato/networks/UUID/messages
Example Request Topic Payload:
{"className":"com.zipato.event.CommandEvent","command":"DISCOVERY_ON", “zwDevUUID”: “UUID”, "zwCmd":
"zwstartCtrlLearnMode", “nwi”:false}

Request object properties:
● nwi: true or false, enable or disable network wide inclusion

Description: Learn mode is used for a number of things:
● Add the controller to a network

○ Controller will receive new node id and home id
○ Controller will receive basic data about all the devices in the network
○ Controller will perform only basic configuration for each device in the

network (Query each device for command classes that should be
encrypted, set associations to primary controller and this controller)

○ The network role of the added controller depends on the role of the
including controller:

● If the including controller is a regular primary controller the
controller included will become a secondary controller. Secondary
controller can NOT add or remove other device to the network.

● If the including controller is a primary SIS controller the controller
included will become an inclusion controller. Inclusion controller
can add or remove other devices from the network but it cannot
independently assign new node ids to devices added to the
network. Inclusion controller will ask the primary controller to
assign a node id to new devices added to the network

● Exclude the controller from the network
○ Effectively, this is the same as calling hard reset. Controller will receive

new home ide and node id 1. All device data will be deleted.
● Replicate data from primary controller to this controller

○ This is used to update device data if devices were added or removed by
the primary controller

● Transfer primary controller role from other controller to this controller
Response object properties:

● type: “CTRL_LEARN_MODE”
● Network: “ZWAVE”
● status:

○ DONE: Learn mode done. Outcome of the procedure is set in the outcome
property

○ FAILED: Learn mode failed, cause of failure set in state property
○ TIMEOUT: Learn mode timed out. Cause of timeout set in state property

● state: cause learn mode failure
● Outcome: can be set to the following values:

○ INCLUSION
■ Controller included into network

○ EXCLUSION
■ Controller excluded from network

○ REPLICATION
■ Device data replicated from primary controller to this controller

○ PRIMARY_ROLE_RECEIVED
■ This controller is now the primary controller

These commands are only applicable to devices that support the WAKE_UP command
class. All battery powered devices (except FLIRS devices) support this command class.

Set device wakeup interval
Request Topic: request/networks/UUID/command
Response/Result Topic: /local/ha/bridges/zipato/devices/UUID/messages
Example Request Topic Payload:
{"className":"com.zipato.event.CommandEvent","command":"DISCOVERY_ON",

"value":60,"zwDevUUID":"e0a52321-88d1-4f6a-9b83-9aba6afdcf27","zwCmd":"ZwConfHandler_SET_WAKE

UP"}

Description: Set device wakeup interval. Wakeup interval is defined in minutes
Response object properties:

● type: “SET_WAKEUP”
● Network: “ZWAVE”
● Status:

○ STARTED
○ WAITING_WAKEUP_NOTIFICATION: Waiting for the device to wake up
○ TIMEOUT_WAKEUP_NOTIFICATION: Timed out while waiting for the device to

wake up (30 seconds)
○ DONE
○ FAILED: reason of failure set in reason property

● value: new wakeup interval, in minutes
● Reason: cause of failure

Get device wakeup interval
Request Topic: request/networks/UUID/command
Response/Result Topic: /local/ha/bridges/zipato/devices/UUID/messages
Example Request Topic Payload:
{"className":"com.zipato.event.CommandEvent","command":"DISCOVERY_ON",

"zwDevUUID":"e0a52321-88d1-4f6a-9b83-9aba6afdcf27","zwCmd":"ZwConfHandler_GET_WAKEUP"}

Description: Get device wakeup interval. Wakeup interval is defined in minutes
Response object properties:

● type: “GET_WAKEUP”
● Network: “ZWAVE”
● Status:

○ STARTED
○ WAITING_WAKEUP_NOTIFICATION: Waiting for the device to wake up
○ TIMEOUT_WAKEUP_NOTIFICATION: Timed out while waiting for the device to
○ DONE
○ FAILED: reason of failure set in reason property

● value: current wakeup interval, in minutes
● Reason: cause of failure

Z-Wave device firmware upgrade
Request Topic: request/networks/UUID/command
Response/Result Topic: /local/ha/bridges/zipato/networks/UUID/messages
Example Request Topic Payload:
{
 "className": "com.zipato.event.CommandEvent",
 "command": "DISCOVERY_ON",
 "zwCmd": "fwUpgrade",
 "zwDevUUID": "b9cc5be6-356a-468b-a78f-41e9c0a3f49a",
 "filePath": "/root/fw.hex"
}

Description: Starts the OTA firmware update procedure.
Response object properties:

● type: “ZW_DEV_OTA”
● Network: “ZWAVE”
● status:

○ STARTED: Firmware update procedure started
○ IN_PROGRESS: Firmware update progress indication, in increments of 4 percent
○ DONE: Firmware update procedure successful
○ FAILED: Failed to remove node, cause of failure set in reason property

● reason: cause of the failed node removal failure
● devUUID: UUID of device being upgraded
● percent: Firmware update progress

Device topics

Get device data
Request Topic: request/devices/UUID/info
Request Topic Payload: N/A
Response Topic: /local/ha/bridges/zipato/devices/UUID/info
Response Type: JSON
Description: Retrieves device specific data, current state and a list of device endpoints
Payload Example:
{

"link": "devices/3354b3a4-3d90-4317-aa70-5c4ba4103f38",
"config": {

"className": "com.zipato.network.zwave.ZwaveDevice",
"uuid": "3354b3a4-3d90-4317-aa70-5c4ba4103f38",
"name": "Danfoss Thermostat",
"cv": 0,
"sv": 0,
"deleted": false,
"nd": true,
"tags": null,
"order": null,
"descriptorFlags": null,
"locationId": null,
"templateId": null,
"description": null,
"model": "8005-0001",
"serial": null,
"firmware": null,
"periodicallyWakeUp": true,
"status": "ENABLED",
"user": null,
"hidden": false,
"wakeUpInterval": 300000,
"savedWakeUpInterval": 300000,
"showIcon": false,
"iconId": 0,
"userIconId": 0,
"iconColors": null,
"configuration": null,
"zwManufacturerId": 2,
"productTypeId": -32763,
"productId": 1,
"appVersion": 2,
"appSubVersion": 6,
"nodeId": 7,
"type": "SLAVE",
"alwaysListening": false,
"minWakeUpInterval": 60000,
"maxWakeUpInterval": 900000,

"defaultWakeUpInterval": 300000,
"wakeUpIntervalStep": 60000,
"sensor1000ms": false,
"sensor250ms": false,
"iconType": null,
"roleType": null,
"basicDevClass": "ROUTING_SLAVE",
"genericDevClass": "THERMOSTAT",
"specificDevClass": "SETPOINT_THERMOSTAT",
"sleeping": false,
"eventMap": null,
"listening": false,
"usesStateChangeNotification": false,
"noBatteryCheck": false,
"assocGrpBlacklist": [],
"crc16Encap": false,
"neighborNodes": ["ZIPATO_CONTROLLER_NODE_ID_1"],
"securelyIncluded": null,
"acceptMulticasts": false,
"alternateVnodeAssoc": false,
"associationGroups": null,
"manufacturerId": "2",
"parent": "f5f264a0-0473-4c10-92c7-0fcfd1cebd5c"

},
"endpoints": [{

"link": "/endpoints/7a8c09b1-aa57-476d-9a8a-5610241e0755",
"name": "Thermostat",
"uuid": "7a8c09b1-aa57-476d-9a8a-5610241e0755"

}],
"network": {

"link": "/networks/f5f264a0-0473-4c10-92c7-0fcfd1cebd5c",
"name": "Zwave",
"uuid": "f5f264a0-0473-4c10-92c7-0fcfd1cebd5c"

},
"state": {

"device": "3354b3a4-3d90-4317-aa70-5c4ba4103f38",
"batteryTimestamp": 1459802516562,
"sentTimestamp": 1459802517766,
"online": true,
"trouble": true,
"receiveTimestamp": 1459802516863,
"onlineState": "TROUBLE",
"mainsPower": false,
"batteryLevel": 70

},
"templateId": null,
"uuid": "3354b3a4-3d90-4317-aa70-5c4ba4103f38"

}

Response object properties:

● state: Current state of the device. Please note that state properties are NOT
persisted across reboots

○ Device: device UUID
○ batteryTimestamp: UNIX timestamp of last received battery status from

device

○ sentTimestamp: UNIX timestamp of last transmission from controller to device
○ Online: online status, whether the device is reachable and in working order
○ Trouble: Usually indicates that there is an intermittent problem with device

communication. Usually it means that esither the controller failed to send a
transmission to a device or a device has not reported back in some time

○ receiveTimestamp: UNIX timestamp of last received transmission from a
device

○ onlineState: current online state
○ mainsPower: whether a device is connected to mains or not
○ batteryLevel: last reported battery level

Receive current device state
Request Topic: N/A
Request Topic Payload: N/A
Response Topic: /local/ha/bridges/zipato/devices/UUID/status
Response Type: JSON
Description: Device status events are sent to this topic as device state is changed.
For instance, a device status event will be sent each time a device sends a battery status report
Payload Example:

"state": {
"device": "3354b3a4-3d90-4317-aa70-5c4ba4103f38",
"batteryTimestamp": 1459802516562,
"sentTimestamp": 1459802517766,
"online": true,
"trouble": true,
"receiveTimestamp": 1459802516863,
"onlineState": "TROUBLE",
"mainsPower": false,
"batteryLevel": 70

}

Endpoint topics
Get endpoint data
Request Topic: request/endpoints/UUID/info
Request Topic Payload: N/A
Response Topic: /local/ha/bridges/zipato/endpoints/UUID/info
Response Type: JSON
Description: Retrieves endpoint specific data, parent device and networkand a list of cluster
endpoints
Response Example:
{

"link": "endpoints/7a8c09b1-aa57-476d-9a8a-5610241e0755",
"attributes": [],
"clusterEndpoints": [{

"link": "/clusterEndpoints/cb9ba097-f89c-4d20-ac10-71d42d25fde9",
"name": "Clock",
"uuid": "cb9ba097-f89c-4d20-ac10-71d42d25fde9"

}, {
"link": "/clusterEndpoints/4aa2f95e-40e6-4622-8487-0f0c866fb7e4",
"name": "Thermostat Setpoints",
"uuid": "4aa2f95e-40e6-4622-8487-0f0c866fb7e4"

}],
"config": {

"className": "com.zipato.network.zwave.ZwaveEndpoint",
"uuid": "7a8c09b1-aa57-476d-9a8a-5610241e0755",
"name": "Thermostat",
"cv": 0,
"sv": 0,
"deleted": false,
"nd": true,
"tags": null,
"order": null,
"type": null,
"category": "ACTUATOR",
"locationId": null,
"iconType": null,
"hidden": false,
"status": "ENABLED",
"description": null,
"templateId": null,
"descriptorFlags": null,
"showIcon": false,
"iconId": 0,
"userIconId": 0,
"iconColors": null,
"genericDevClass": "THERMOSTAT",
"configuration": null,
"specificDevClass": "SETPOINT_THERMOSTAT",
"optionalFunc": false,
"cmdClassServer": ["COMMAND_CLASS_MULTI_CMD", "COMMAND_CLASS_CLOCK",

"COMMAND_CLASS_THERMOSTAT_SETPOINT", "COMMAND_CLASS_VERSION", "COMMAND_CLASS_PROTECTION",

"COMMAND_CLASS_MANUFACTURER_PROPRIETARY", "COMMAND_CLASS_CLIMATE_CONTROL_SCHEDULE",
"COMMAND_CLASS_BATTERY", "COMMAND_CLASS_MANUFACTURER_SPECIFIC", "COMMAND_CLASS_WAKE_UP"],

"cmdClassClient": ["COMMAND_CLASS_MULTI_CMD", "COMMAND_CLASS_CLOCK",
"COMMAND_CLASS_MANUFACTURER_PROPRIETARY", "COMMAND_CLASS_CLIMATE_CONTROL_SCHEDULE"],

"zwIconType": null,
"groupId": 0,
"mainEndpoint": true,
"multiInstanceId": 0,
"cmdClassVersionMap": {

"COMMAND_CLASS_WAKE_UP": 2
},
"tag": null,
"epId": 0,
"eventsToGroup": null,
"eventsToInstance": null,
"mute": false,
"securityCmdClasses": null,
"ignoreAssoc": false,
"parent": "3354b3a4-3d90-4317-aa70-5c4ba4103f38"

},
"device": {

"link": "/devices/3354b3a4-3d90-4317-aa70-5c4ba4103f38",
"name": "Danfoss Thermostat",
"uuid": "3354b3a4-3d90-4317-aa70-5c4ba4103f38"

},
"network": {

"link": "/networks/f5f264a0-0473-4c10-92c7-0fcfd1cebd5c",
"name": "Zwave",
"uuid": "f5f264a0-0473-4c10-92c7-0fcfd1cebd5c"

},
"sourceBindings": [],
"targetBindings": [],
"templateId": null,
"uuid": "7a8c09b1-aa57-476d-9a8a-5610241e0755"

}

ClusterEndpoint topics
Get clusterEndpoint data
Request Topic: request/clusterEndpoints/UUID/info
Request Topic Payload: N/A
Response Topic: /local/ha/bridges/zipato/clusterEndpoints/UUID/info
Response Type: JSON
Description: Retrieves cluster endpoint specific data, parent device, endpoint and network and
a list of child attributes.
Response Example:
{

"link": "clusterEndpoints/cb9ba097-f89c-4d20-ac10-71d42d25fde9",
"attributes": [],
"category": "OTHER",
"clusterClass": "com.zipato.cluster.Clock",
"config": {

"className": "com.zipato.cluster.zwave.ZwaveClock",
"uuid": "cb9ba097-f89c-4d20-ac10-71d42d25fde9",
"name": "Clock",
"cv": 0,
"sv": 0,
"deleted": false,
"nd": true,
"tags": null,
"order": null,
"queryInterval": null,
"queryAttributes": null,
"attributeDefs": null,
"shouldBeQueried": true,
"isSecurity": false,
"hidden": false,
"templateId": null,
"showIcon": false,
"iconId": 0,
"userIconId": 0,
"iconColors": null,
"clusterClass": "com.zipato.cluster.Clock",
"parent": "7a8c09b1-aa57-476d-9a8a-5610241e0755"

},
"device": {

"link": "/devices/3354b3a4-3d90-4317-aa70-5c4ba4103f38",
"name": "Danfoss Thermostat",
"uuid": "3354b3a4-3d90-4317-aa70-5c4ba4103f38"

},
"endpoint": {

"link": "/endpoints/7a8c09b1-aa57-476d-9a8a-5610241e0755",
"name": "Thermostat",
"uuid": "7a8c09b1-aa57-476d-9a8a-5610241e0755"

},
"network": {

"link": "/networks/f5f264a0-0473-4c10-92c7-0fcfd1cebd5c",
"name": "Zwave",

"uuid": "f5f264a0-0473-4c10-92c7-0fcfd1cebd5c"
},
"templateId": null,
"uuid": "cb9ba097-f89c-4d20-ac10-71d42d25fde9"

}

Attribute topics

Get attribute data
Request Topic: request/attributes/UUID/info
Request Topic Payload: N/A
Response Topic: /local/ha/bridges/zipato/attributes/UUID/info
Response Type: JSON
Description: Retrieves attribute data.
Response example:
{

"uuid": "b0334f5b-572d-4bbf-851b-356c76161ca4",
"name": "VALVE_POSITION",
"attribute": "value",
"attributeId": 8,
"clusterUuid": "bef380ce-3fb6-4e8f-8518-3563c7252787",
"reported": true,
"unit": "%",
"precision": 0,
"scale": 1.0

}

Attribute values
Topic: /local/ha/bridges/zipato/attributes/UUID/attributeChangeEvents
Request Topic: N/A
Request Topic Payload: N/A
Response Topic: /local/ha/bridges/zipato/attributes/UUID/info
Response Type: JSON
Description: Unsolicited attribute change events.
Response example:
{

"className": "com.zipato.event.ThermostatSetpointValueEvent",
"clusterClass": "com.zipato.cluster.ThermostatSetpoint",
"attribute": "value1",
"value": 21.0,
"timestamp": 1459803817093,
"setpointType": "HEATING",
"source": "7a8c09b1-aa57-476d-9a8a-5610241e0755"

}

Attribute actions

Set attribute
Request Topic: request/attributes/UUID/textValue
Response/Result Topic: /local/ha/bridges/zipato/attributes/UUID/attributeChangeEvents
Request Topic Payload Type: String
Payload example: true, false (for binary switches for example)
Description: Set attribute state with plain strings

Set attribute
Request Topic: request/attributes/UUID/value
Response/Result Topic: /local/ha/bridges/zipato/attributes/UUID/attributeChangeEvents
Request Topic Payload Type: JSON
Payload example: (for binary switches for example)
{

"value": "true"
}

Description: Set attribute state with simple JSON objects

Get current attribute value
Request Topic: request/attributes/UUID/getValue
Response/Result Topic: /local/ha/bridges/zipato/attributes/UUID/currentValue
Request Topic Payload Type: N/A
Example response:
{"value":"No Active Events","timestamp":"2016-08-09T10:38:15Z"}

Description: Get current attribute value. At the moment the values are not persisted to
permanent storage.

Z-Wave device state transitions

● A device can be in three states:
○ ONLINE - The controller can send and receive transmissions from the device

without issues
○ TROUBLE- Intermittent transmission or reception problems
○ OFFLINE - Three consecutive transmissions have failed, or no reception from a

battery powered device for three consecutive wakeup intervals, the device is
considered unreachable

● State transition events are sent to
/local/ha/bridges/zipato/devices/$UUID/status MQTT topics

● The state machine diagram consists of the following elements:
○ Actions - Yellow objects
○ States - Green objects
○ Branches - White objects

Binary sensor endpoints

Certain devices can have more than one binary sensor. These sensors will usually be presented
as individual endpoints with a single (meaning such an endpoint has only one cluster)
ZwaveAlarmSensor or ZwaveSensorSensorBinary cluster. Such endpoints can be
distinguished with the epId property. A table of epId values for endpoints that contain either a
ZwaveAlarmSensor or a ZwaveSensorSensorBinary is shown below.

Sensor type ZwaveAlarmSensor ZwaveSensorSensorBinary

ALL_PURPOSE/GENERAL_
PURPOSE

156 49

SMOKE 157 50

CO 158 51

CO2 159 52

HEAT 160 53

WATER 161 54

FREEZE 162 55

TAMPER 163 56

AUX 164 57

DOOR_WINDOW 165 58

TILT 166 59

MOTION 167 60

GLASS_BREAK 168 61

Z-Wave manufacturer specific device identification
tables

Please note that the numbering scheme is arbitrary! Each manufacturer can define their own
numbering scheme.

Aeon Labs RGBW Bulb
Manufacturer ID: 0x0086

Region EU US AU CN

Product Type ID 0x0003 0x0103 0x0203 0x1D03

Product ID 0x0062 0x0062 0x0062 0x0062

Fibaro FGMS-001 Motion Sensor (Z-Wave Plus Variant)
Manufacturer ID: 0x010F

Region EU US AU RU IL

Product Type ID 0x0801 0x0801 0x0801 0x0801 0x0801

Product ID 0x1001 0x2001 0x3001 0x4001 0x7001

Fibaro FGFS-101 Flood Sensor (Z-Wave Plus Variant)
Manufacturer ID: 0x010F

Region EU US AU RU IL

Product Type ID 0x0B01 0x0B01 0x0B01 0x0B01 0x0B01

Product ID 0x1002 0x2002 0x3002 0x4002 0x7002

Fibaro FGFS-101 Flood Sensor
Manufacturer ID: 0x010F

Region EU US AU RU IL

Product Type ID 0x0B00 0x0B00 0x0B00 0x0B00 0x0B00

Product ID 0x1001 0x2001 0x3001 0x4001 0x7001

Fibaro FGK-101 Door/Window Sensor (Z-Wave Plus Variant)
Manufacturer ID: 0x010F

Region EU US AU RU IL

Product Type ID 0x0701 0x0701 0x0701 0x0701 0x0701

Product ID 0x1001 0x2001 0x3001 0x4001 0x7001

Kwikset Smartcode door lock
Manufacturer ID: 0x0090

Region US

Product Type ID 0x0001

Product ID 0x0001

Invoke interface

Invoke interface is a simple JSON RPC mechanism which can be used to invoke methods of
certain objects. The invoke interface is available for the following object types:

● networks
● devices
● endpoints
● clusterEndpoints

Request topic:
request/OBJECT_TYPE/UUID/invoke

Response topic:
request/OBJECT_TYPE/UUID/messages

Request JSON payload properties:

● methodName - Self explanatory, the name of the method that needs to be invoked
● arg[1-9] - method arguments

Request JSON payload example:
{
 "methodName": "userCodeSet",
 "arg1": 1,
 "arg2": "1111"
}

Response JSON object:

● Each invocation will return a result indicating a successful invocation, or an error. A
successful invocation will always return: "Invocation success: methodName"

○ If an error occurs an error message will be returned. An error usually indicates an
invalid method name, invalid number of arguments, wrong argument type or a
JSON parsing error

● Additionally, certain methods will have specific response objects

Available methods

setName

Description: Change the name of the target object
Method name : setName
Argument count: 1
Argument 1: object name
Argument 1 type: string
Target object: all objects

userCodeSet

Description: Set specific door lock user code.
Method name: userCodeSet
Argument count: 2
Argument 1: User code slot
Argument 1 type: type: Integer
Argument 2: PIN Code
Argument 2 type: String (Please note that available characters are the ones available on the
device keypad!)
Target object: ZwaveUserCodeInput cluster

userCodeGet

Description: Retrieve specific door lock user code.
Method name: userCodeGet
Argument count: 1
Argument 1: User code slot
Argument 1 type: Integer
Target object: ZwaveUserCodeInput cluster

setIgnoreDeprecatedCc

Description: Disables handling of deprecated command classes for Z-Wave Plus devices.
Current list of deprecated command classes:

SENSOR_BINARY (replaced by NOTIFICATIONS command class)
ALARM_SENSOR (replaced by NOTIFICATIONS command class)

Method name: setIgnoreDeprecatedCc
Argument count: 1
Argument 1: true/false (false by default)
Argument 1 type: boolean
Target object: Zwave network

setAssociationPolicy

Description: set Z-Wave association policy for Z-Wave Plus devices. Current available
association policies:

LIFELINE_ONLY - Only associate with Lifeline association group
ALL_GROUPS - Associate with all association groups

Method name: setAssociationPolicy
Argument count: 1
Argument 1: name of association policy
Argument 1 type: String
Target object: Zwave network

Runtime backup procedure

Since the entire runtime is completely contained within a single folder, the simplest backup and
restore procedure would simply be to backup and restore the entire runtime folder. The lib/
folder might be removed to save storage space.

Z-Wave module protocol data backup/restore mechanisms also store and read data from the
zipato runtime folder.

So a complete backup procedure could go like this:

1) Backup Z-Wave module protocol data (We suggest that this is performed periodically)
2) Backup the entire Zipato runtime folder. The lib/ folder might be removed to reduce

storage requirements
3) Restore the runtime folder to a new hardware unit.
4) Copy the lib/ folder to the runtime folder if it was previously removed from the backup
5) Restore Z-Wave module protocol data

